27. A Microfluidic-based Cell Encapsulation Platform to Achieve High Long-term Cell Viability in Photopolymerized PEGNB Hydrogel Microspheres. Z. Jiang, B. Xia, R. McBride, and J. Oakey, Journal of Materials Chemistry B, 2016, doi: 10.1039/c6tb02551j Article

26. Long-term Growth of an Early Diverging Land Plant in Microfluidic Devices Enables Subcellular Studies in Development.  C.S. Bascom Jr., S. Wu, K. Nelson, J. Oakey, and M. Bezanilla, Plant Physiology, 2016, doi: 10.1104/pp.16.00879 Article 


25. An Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles, B. Xia, K. Krutkramelis, J.Oakey, Biomacromolecules, 2016, doi: 10.1021/acs.biomac.6b00597 Article 


24. A microfluidic Flow Focusing Platform to Screen the Evolution of Crude Oil–brine Interfacial Elasticity. B. Morin, Y. Liu, V. Alvarado and J. Oakey, Lab Chip, 2016, 1–8, doi: 10.1039/C6LC00287K Article

23. Long-range Forces Affecting Equilibrium Inertial Focusing Behavior in Straight High Aspect Ratio Microfluidic Channels. A. E. Reece and J. Oakey, Phys. Fluids, 2016, 28, 043303–11, doi:10.1063/1.4946829 Article


22. Microtubule Motility Analysis Based on Time-Lapse Fluorescence Microscopy. S. Masoudi, C. H. G. Wright, J. C. Gatlin and J. Oakey, ISA Biomed. Sci. Inst., 2016, 52, 126–133 Article

21. Monodisperse Polyethylene Glycol Diacrylate Hydrogel Microsphere Formation by Oxygen-controlled Photopolymerization in a Microfluidic Device. K. Krutkramelis, B. Xia and J. Oakey, Lab Chip, 2016, 16, 1–9, doi: 10.1039/C6LC00254D Article


20. Microfluidic Techniques for High Throughput Single Cell Analysis. A. Reece, B. Xia, Z. Jiang, B. Noren, R. McBride and J. Oakey, Current Opinion in Biotechnology, 2016, 40, 90–96. doi:10.1016/j.copbio.2016.02.015 Article


19. Observed and predicted particle dynamics driven by inertial flows within high aspect ratio microfluidic channel, J. McConnell and J. Oakey, Microfluid Nanofluid, 2016, 20, 1–5 doi:10.1007/s10404-015-1674-1 Article

18. Staged Inertial Microfluidic Focusing for Complex Fluid Enrichment. A.E. Reece, K. Kaastrup, H.D. Sikes, J. Oakey, RSC Advances, 5, 53857–53864, 2015, doi: 10.1039/C5RA10634F Article 


17. Photodegradable Hydrogels for Selective Capture and Release of Mammalian Cells, P. Fischer, M. Tibbitt, A. Kloxin, K. Anseth, J. Oakey, Biomed Sci Instrum, 50, 62-67, 2014, Article

16. Changes in Cytoplasmic Volume Are Sufficient to Drive Spindle Scaling, J. Hazel, K. Krutkramelis, P. Mooney, M. Tomschik, K. Gerow, J. Oakey, J.C. Gatlin, Science, 342, 853-846, 2013 doi: 10.1126/science.1243110 Article


15. Particle Focusing in Staged Microfluidic Devices for Cytometry. J. Oakey, R. Applegate, E. Arellano, S. Graves, D. DiCarlo, M. Toner, Analytical Chemistry, 821, 3862-3867, 2010, doi:10.1021/ac100387b Article



14. Stop-Flow Lithography for the Production of Shape-Evolving Auto-erodable Microgel Particles. D.K. Hwang, J. Oakey, M. Toner, J. Arthur, K. Anseth, S. Lee, A. Zeiger, K.J. Van Vilet, P.S. Doyle, J American Chemical Society, 131, 4499-4504, 2009, doi:10.1021/ja809256d Article


13. Fiber-Focused Diode Bar Optical Trapping for Microfluidic Flow Manipulation, R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, Applied Physics Letters, 92, 2008 doi:10.1063/1.2829589 Article

12. Optically Integrated Microfluidic Systems for Cellular Characterization and Manipulation. R.W. Applegate Jr, D.N. Schafer, W. Amir, J. Squier, T. Vestad, J. Oakey, D.W.M. Marr. Journal of Optics A: Pure and Applied Optics, 9, S122-S128, 2007 doi:10.1088/1464-4258/9/8/S03 Article

11. Optical Waveguides via Viscosity-Mismatched Microfluidic Flows, M. Brown, T. Vestad, J. Oakey, D.W.M. Marr, Applied Physics Letters, 88, 2006 doi: 10.1063/1.2190487 Article

10. Microfluidic Sorting System Based on Optical Waveguide Integration and Diode Laser Bar Trapping, R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, A. Said, Lab on a Chip, 6, 422-426, 2006. doi:10.1039/b512576f Article


9. Hydrodynamic Focusing for Vacuum-Pumped Microfluidics. T. Stiles, R. Fallon, T. Vestad, J. Oakey, D.W.M. Marr, J. Squier, R. Jimenez, Microfluidic Nanofluid, 1, 280-283, 2005 doi:10.1007/s10404-005-0033-z Article


8. Optical Trapping, Manipulation, and Sorting of Cells and Colloids in Microfluidic Systems with Diode Laser Bars. R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, Optics Express, 12, 4390-4398, 2004, doi:10.1364/OPEX.12.004390 Article

7. Flow Control for Capillary-Pumped Microfluidic Systems. T. Vestad, D.W.M. Marr, J. Oakey. Journal of Micromechanics and Microengineering, 14, 1503-1506, 2004 doi:10.1088/0960-1317/14/11/010 Article

6. Laminar-Flow-Based Separations at the Microscale. J. Oakey, J. Allely, D.W.M. Marr, Biotechnology Progress, 18, 1439-1442, 2002 doi:10.1021/bp0256216 Article

5. Fabrication of Linear Colloidal Structures for Microfluidic Applications. A. Terray, J. Oakey, D.W.M. Marr, Applied Physics Letters, 81, 1555-1557, 2002. doi:10.1063/1.1503176 Article

4. Microfluidic Control Using Colloidal Devices, A. Terray, J. Oakey, D.W.M. Marr, Science, 296, 1841-1844, 2002.  doi:10.1126/science.1072133 Article

3. An Integrated AFM and SANS Approach toward Understanding Void Formation in Conductive Composite Materials. J. Oakey, D.W.M. Marr, K.B Schwartz, M. Wartenberg, Macromolecules, 33, 5198-5203, 2000 doi:10.1021/ma0000024 Article

2. Influence of Polyethylene and Carbon Black Morphology on Void Formation in Conductive Composite Materials: A SANS Study. J.Oakey, D.W.M.  Marr, K.B.Schwartz, M.Wartenberg. Macromolecules, 32, 5399-5404, 1999 doi:10.1021/ma990160z Article 

1. Interaction of Methyl Jasmonate, Wounding and Fungal Elicitation During Sesquiterpene Induction in Hyoscyamus muticus in Root Cultures. G. Singh, J. Gavrieli, J. Oakey, W. R. Curtis, Plant Cell Reports, 17, 391-395, 1998.  doi:10.1007/s002990050412 Article